Multivariate streamflow forecasting using independent component analysis

نویسندگان

  • Seth Westra
  • Ashish Sharma
  • Casey Brown
  • Upmanu Lall
چکیده

[1] Seasonal forecasting of streamflow provides many benefits to society, by improving our ability to plan and adapt to changing water supplies. A common approach to developing these forecasts is to use statistical methods that link a set of predictors representing climate state as it relates to historical streamflow, and then using this model to project streamflow one or more seasons in advance based on current or a projected climate state. We present an approach for forecasting multivariate time series using independent component analysis (ICA) to transform the multivariate data to a set of univariate time series that are mutually independent, thereby allowing for the much broader class of univariate models to provide seasonal forecasts for each transformed series. Uncertainty is incorporated by bootstrapping the error component of each univariate model so that the probability distribution of the errors is maintained. Although all analyses are performed on univariate time series, the spatial dependence of the streamflow is captured by applying the inverse ICA transform to the predicted univariate series. We demonstrate the technique on a multivariate streamflow data set in Colombia, South America, by comparing the results to a range of other commonly used forecasting methods. The results show that the ICA-based technique is significantly better at representing spatial dependence, while not resulting in any loss of ability in capturing temporal dependence. As such, the ICA-based technique would be expected to yield considerable advantages when used in a probabilistic setting to manage large reservoir systems with multiple inflows or data collection points.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Time Series Forecasting Using Independent Component Analysis

The paper presents a method for multivariate time series forecasting using Independent Component Analysis (ICA), as a preprocessing tool. The idea of this approach is to do the forecasting in the space of independent components (sources), and then to transform back the results to the original time series space. The forecasting can be done separately and with a different method for each componen...

متن کامل

Uncertainty Analysis of Monthly Streamflow Forecasting

Streamflow forecasting is an important factor in water resources planning and management. In this study Feed Forward Artificial Neural Network (FFANN) was used for monthly streamflow forecasting. Three scenarios were considered for modeling. Principal Component Analysis (PCA) is used for reducing the model architecture complexity and input data reduction. Twelve statistical criteria were used t...

متن کامل

Long-term Streamflow Forecasting by Adaptive Neuro-Fuzzy Inference System Using K-fold Cross-validation: (Case Study: Taleghan Basin, Iran)

Streamflow forecasting has an important role in water resource management (e.g. flood control, drought management, reservoir design, etc.). In this paper, the application of Adaptive Neuro Fuzzy Inference System (ANFIS) is used for long-term streamflow forecasting (monthly, seasonal) and moreover, cross-validation method (K-fold) is investigated to evaluate test-training data in the model.Then,...

متن کامل

پیش‌بینی خشکسالی هیدرولوژیک با استفاده از سری‌های زمانی

INTRODUCTION Hydrologic drought in the sense of deficient river flow is defined as the periods that river flow does not meet the needs of planned programs for system management. Drought is generally considered as periods with insignificant precipitation, soil moisture and water resources for sustaining and supplying the socioeconomic activities of a region. Thus, it is difficult to give a univ...

متن کامل

Forecasting Spring Reservoir Inflows in Churchill Falls Basin in Québec, Canada

The performance of different models and procedures for forecasting aggregated May–July streamflow for the Churchill Falls basin on the Québec-Labrador peninsula is compared. The models compared have different lead times and include an autoregressive model using only past streamflow data, an autoregressive with exogenous input model utilizing both past streamflow and precipitation, and a linear ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008